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In this work we present a detailed study and derivation of the thermopower and thermoelectric coefficient of
nanogranular metals at large tunneling conductance between the grains, gT�1. An important criterion for the
performance of a thermoelectric device is the thermodynamic figure of merit which is derived using the kinetic
coefficients of granular metals. All results are valid at intermediate temperatures, Ec�T /gT��, where � is the
mean energy-level spacing for a single grain and Ec is its charging energy. We show that the electron-electron
interaction leads to an increase in the thermopower with decreasing grain size and discuss our results in light
of future generation thermoelectric materials for low-temperature applications. The behavior of the figure of
merit depending on system parameters such as grain size, tunneling conductance, and temperature is presented.
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I. INTRODUCTION

Thermoelectric materials with high efficiency are a major
research area in condensed-matter physics and materials sci-
ence for several decades now. Due to recent advances in
nanofabrication, these materials promise next generation de-
vices for conversion of thermal energy to electrical energy,
and vice versa. A measure for the performance or efficiency
of a thermoelectric material is the dimensionless figure of
merit, usually denoted as ZT, where T is the temperature. It
depends on the thermopower or Seebeck coefficient and the
electric and thermal conductivities.1–5 However, the
Wiedemann-Franz law has defeated much progress in in-
creasing the performance of bulk materials, since it directly
relates electric and thermal conductivities whereas the figure
of merit is proportional to the quotient of both. The Seebeck
coefficient of a material measures the magnitude of an in-
duced thermoelectric voltage in response to a temperature
difference across that material. If the temperature difference
�T between the two ends of a material is small, then the
thermopower, S, of the material is defined as S=−�V /�T,
where �V is the voltage difference across a sample.

In general, thermoelectric devices are used as converters
for either electrical power into heating/cooling �Peltier ef-
fect� or sources of different temperature into electricity �See-
beck effect�. These devices are usually much simpler, espe-
cially without moving parts, than conventional devices, e.g.,
two-phase compressors for cooling, and therefore more reli-
able. However, for both effects the materials need to have a
good electrical conductivity to minimize Ohmic heating and
at the same time to be bad thermal conductors to avoid ther-
mal equilibration of the temperature gradient. Therefore, the
aim is to create materials which optimize these parameters
together with the thermopower. Currently thermoelectric de-
vices based on p-type- and n-type-doped semiconductor
junctions achieve only about 12% of the maximal theoretical
efficiency �as compared to 60% in conventional cooling
systems�.5

To be competitive compared with conventional refrigera-
tors, one must develop thermoelectric materials with large
ZT. The highest figure of merit for bulk thermoelectric ma-

terials is about 1, but in order to match the efficiency of
mechanical systems, ZT�9 is needed.5 However, for
ZT�2 thermoelectric applications become economically
competitive.6–9 Although it is possible in principle to develop
homogeneous materials with that large figure of merit, there
are no concrete devices on the horizon. Especially promising
for further improvement in efficiency are inhomogeneous/
granular thermoelectric materials,10 in which one can di-
rectly control the system parameters. In Ref. 11 a figure of
merit at 300 K of 2.4 for a layered nanoscale structure and
later in Ref. 12 a ZT of 3.2 at about 600 K for a bulk material
with nanoscale inclusions were reported.

Overall, recent years have seen a remarkable progress in
the design of granular conductors with controllable structure
parameters. Granules can be capped with organic �ligands� or
inorganic molecules which connect and regulate the coupling
between them. Altering the size and shape of granules one
can regulate quantum confinement effects. In particular, tun-
ing microscopic parameters one can vary the granular mate-
rials from being relatively good metals to pronounced insu-
lators as a function of the strength of electron-tunneling
couplings between conducting grains.13–15 This makes granu-
lar conductors a perfect exemplary system for studying ther-
moelectric and related phenomena. All these experimental
achievements and technological prospects call for a compre-
hensive theory that is able to provide quantitative description
of not only the electric but also the thermoelectric properties
of granular conductors, which in the future can serve as a
basis for a clever design of devices for a new generation of
nanothermoelectrics.

The most theoretical progress so far was achieved by the
numerical solution of phenomenological models.16,17 How-
ever, no analytical results obtained from a microscopic
model for coupled nanodot/grain systems is available up to
now. Thus, the fundamental question that remains open is
how thermoelectric coefficient and thermopower behave in
nanogranular thermoelectric materials. Here, we make a step
toward answering this question for granular metals at inter-
mediate temperatures by generalizing our approach18 re-
cently developed for the description of electric19 and heat
transport.20 In particular, we will answer the question to what
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extent quantum and confinement effects in nanostructures are
important in changing ZT.

In this paper we investigate the thermopower S, thermo-
electric coefficient �, and the figure of merit ZT of granular
samples focusing on the case of large tunneling conductance
between the grains, gT�1. Without Coulomb interaction the
granular system would be a good metal in this limit, and our
task is to include charging effects in the theory. We further-
more restrict our considerations to the case of intermediate
temperatures,

Ec � T/gT � � , �1�

where � is the mean level spacing of a single grain and Ec is
the charging energy. The left inequality means that the tem-
perature is not high enough such that Coulomb effects are
pronounced. It also allows us to perform all the calculations
up to logarithmic accuracy. The right inequality allows us to
consider the electronic motion as coherent within the grains;
however this coherence does not extend to scales larger than
the size of a single grain.18 In Ref. 21 we presented a few
major results which we extend here and describe the deriva-
tions in much more detail.

This paper is organized as follows. In Sec. II we summa-
rize our main results and discuss their range of applicabili-
ties, in Sec. III we introduce the model, and in Sec. IV we
outline the derivation of the thermoelectric coefficient of
granular metals in and without the presence of interaction
which is the main result of this paper. In the following sec-
tion we discuss the behavior of the Seebeck coefficient and
figure of merit �Sec. V� as a function of sample parameters.
Finally, in Sec. VI we discuss our findings and present pos-
sible further applications of our method. Important details of
our calculations are presented in several comprehensive ap-
pendixes; in Appendix A we calculate the thermoelectric co-
efficient of homogeneous disorder metals in the absence of
interaction. In Appendix B we derive the heat and electric
currents of granular metals, and in Appendixes C and D we
calculate the thermoelectric coefficient of granular metals
without and in the presence of interaction, respectively.

II. RESULTS AND SUMMARY

In this section we summarize our results and discuss their
range of applicabilities. The main results of our work are as
follows. �i� We derive the expression for the thermoelectric
coefficient � of granular metals that includes corrections due
to Coulomb interaction at temperatures T�gT�, where � is
the mean level spacing of a single grain,

� = ��0��1 −
1

4gTd
ln

gTEc

T
� . �2a�

Here

��0� = − ��2/3�egTa2−d�T/	F� �2b�

is the thermoelectric coefficient of granular materials in the
absence of electron-electron interaction with e as the electron
charge, a as the size of a single grain, d=2,3 as the dimen-
sionality of a sample, 	F as the Fermi energy, and Ec=e2 /a
as the charging energy.

The condition for the temperature range of our theory
ensures that the argument of the logarithm in Eq. �2a� is
much larger than 1, such that all numerical prefactors under
the logarithm can be neglected. Furthermore, it also defines a
critical lower limit for the grain size when the charging en-
ergy Ec becomes of the order of the mean energy-level spac-
ing �.

At the temperatures under consideration, the electron mo-
tion is coherent within the grains, but coherence does not
extend to scales larger than the size a of a single grain.18

Under these conditions, the electric conductivity 
 and the
electric thermal conductivity � are given by the
expressions19,20,22





�0� = 1 − ln�gTEc/T�/�2�dgT� , �3a�

�

��0� = 1 −
ln�gTEc/T�

2�dgT
+

1

2�2gT�
3� , d = 3

ln
gTEc

T
, d = 2, 	 �3b�

where


�0� = 2e2gTa2−d and ��0� = L0
�0�T �3c�

are the electric �including spin� and thermal conductivities of
granular metals in the absence of Coulomb interaction with
L0=�2 /3e2 as the Lorentz number. We mention that at tem-
peratures T�gT� the correction to the thermoelectric coeffi-
cient, Eq. �2a�, has a T ln T dependence in both d=2,3 di-
mensions which is similar to the result for the electric
conductivity, Eq. �3a�, having a ln T dependence in all di-
mensions as well.

�ii� Using the above results, we obtain the expression for
thermopower S of granular metals,

S = S�0��1 −
� − 2

4�gTd
ln

gTEc

T
� , �4a�

where

S�0� = − ��2/6��1/e��T/	F� �4b�

is the thermopower of granular metals in the absence of Cou-
lomb interaction.

�iii� Finally, we find the figure of merit to be

Z

Z�0� = 1 −
� − 2

2�gTd
ln

gTEc

T
−

1

2�2gT�
3� , d = 3

ln
gTEc

T
, d = 2, 	

�5a�

where

Z�0�T = ��2/12��T/	F�2 �5b�

is the bare figure of merit of granular materials and �

0.355 is a numerical coefficient. In Sec. V we present plots
of Z in dependence of various sample parameters. We find
that the influence of granularity is most effective for small
grain sizes and the presence of Coulomb interaction de-
creases the figure of merit.
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At this point we remark that all results are obtained in the
absence of phonons which become relevant only at higher
temperatures. At the end of this paper we will briefly discuss
their influence.

III. MODEL

We start our considerations with the introduction of our
model. We consider a d-dimensional array of metallic grains
with Coulomb interaction between electrons. The motion of
electrons inside the grains is diffusive, i.e., the electron’s
mean-free path � is smaller than the grain size a, and they
tunnel from grain to grain. We assume that the sample would
be a good metal in the absence of Coulomb interaction.
However, we also assume that the tunneling conductance gT
is still smaller than the grain conductance g0, meaning that
the granular structure is pronounced and the resistivity is
controlled by tunneling between grains. Each grain is char-
acterized by two energy scales: �i� the mean energy-level
spacing � and �ii� the charging energy Ec=e2 /a �for a typical
grain size of a
10 nm, Ec is of the order of 2000 K�, and
we assume that the condition �
Ec is fulfilled.

The system of coupled metallic grains is described by the

Hamiltonian Ĥ=�iĤi, where the sum is taken over all grains
in the system and

Ĥi = �
k

�kâik
† âik + �

j�i

e2n̂in̂j

2Cij
+ �

j,p,q
�tij

pqâip
† âjq + c.c.� . �6�

The first term on the right-hand side �rhs� of Eq. �6� de-
scribes the ith isolated disordered grain, âi,k

† �âi,k� are the cre-
ation �annihilation� operators for an electron in the state k
and �k=k2 /2m−� with � being the chemical potential.

The second term describes the charging energy, Cij is the
capacitance matrix, and n̂i=�kâik

† âik is the number operator
for electrons in the ith grain. The Coulomb interaction is
long ranged and its off-diagonal components cannot be ne-
glected. Note that since metallic grains have an infinite di-
electric constant, the effective dielectric constant of the
whole sample can be considerably larger than the dielectric
constant of its insulating component. Thus the effective
single-grain charging energy can be much less than the elec-
trostatic energy of a single grain in vacuum.

The last term in Eq. �6� is the tunneling part of the Hamil-
tonian where tij are the tunnel matrix elements between
grains i and j which we consider to be random Gaussian
variables defined by their correlators

�tij
�piqjtij

pi�qj�
 = tij
2 �pipi�

�qjqj�
, �7�

tij
2 = t0

2=const. The dimensionless tunneling conductance is re-
lated to the average matrix elements as

gT = 2��t0
2/�2� . �8�

The conductance gT is defined per one spin component, such
that, for example, the high-temperature �Drude� conductivity
of a periodic granular sample is 
�0�=2e2gTa2−d.

IV. THERMOELECTRIC COEFFICIENT

Having introduced our model in the previous section, we
come now to the main methodical part of our work, the deri-
vation of the thermoelectric coefficient �. In general the
three kinetic coefficients are the electric conductivity 
, the
thermoelectric coefficient �, and the thermal conductivity �.
They are related to the Matsubara response functions L����

with � ,�� �e ,h� �Refs. 3, 4, and 23� as

j�e� = − �L�ee�/�e2T�� � �eV� − �L�eh�/�eT2�� � T ,

j�h� = − �L�eh�/�eT�� � �eV� − �L�hh�/T2� � T . �9a�

Here j�e� �j�h�� is the electric �thermal� current and V is the
electrostatic potential. From Eq. �9a� one finds that


 = L�ee�/T, � = L�eh�/T2,

S = − �V/�T = L�eh�/�TL�ee�� , �9b�

where the response functions are given by Kubo formulas

L���� = − � ıT�

ad � �
�

�→0

���
0

1/T

d�eı�m��T�j
������j����0�
�

�m→−ı�+�

,

�10�

with T� being the time-ordering operator for the currents with
respect to the imaginary time �. Thus, to calculate the ther-
moelectric coefficient � and thermopower S of granular met-
als, one has to know the explicit form of the electric j�e� and
thermal j�h� currents.

The electric current ji
�e� through grain i is defined as

ji
�e� = �

j

ĵij
�e� = edn̂i/dt = ıe�n̂i,Ĥ� . �11a�

Straightforward calculations �see Appendix B� lead to

ĵij
�e� = ıe�

k,q
�tij

kqâik
† âjq − tji

qkâjq
† âik� . �11b�

For granular metals the thermal current operator

ji
�h� = �

j

ĵij
�h� �12a�

can be obtained as follows. The energy content of each grain

changes as a function of time, such that dĤi /dt= i�Ĥi , Ĥ�.
Energy conservation requires that this energy flows to other

grains in the system, dĤi /dt�� jĵij
�h�. Calculating the com-

mutator �Ĥi , Ĥ�, we obtain �for details see Appendix B�

ĵij
�h� = ĵij

�h,0� + ĵij
�h,1�, �12b�

ĵij
�h,0� = ı�

k,q

�k + �q

2
�tij

kqâik
† âjq − tji

qkâjq
† âik� , �12c�
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ĵij
�h,1� = −

e

4�
m
� �n̂i; ĵ jm

�e��+

Cim
−

�n̂j; ĵim
�e��+

Cjm
� , �12d�

where �Â ; B̂�+ denotes the anticommutator. The contribution

ĵij
�h,0� is the heat current in the absence of the electron-

electron interaction, while the second term ĵij
�h,1� appears due

to Coulomb interaction. Equation �12b� implies that the ther-
mal current operator must be associated with two different
vertices in a diagram representation, Fig. 1. We remark that
Eq. �6� also suggests a finite contribution to ji

�h� proportional
to t2—which indeed exists. However, it vanishes when
summed over the sample �for details see Appendix B�.

For large tunneling conductance, the Matsubara thermal
current—electric current correlator—can be analyzed pertur-
batively in 1 /gT, using the diagrammatic technique discussed
in Ref. 18 that we briefly outline below. The self-energy of
the averaged single electron Green’s function has two con-
tributions. The first one corresponds to scattering by impuri-
ties inside a single grain while the second is due to the pro-
cess of scattering between the grains. The former results only
in a small renormalization of the relaxation time which de-
pends in general on the electron energy � as

��
−1 = �0

−1�1 + �d/2 − 1��/	F� , �13�

which is a result of the renormalization of the density of
states �DOS� at the Fermi surface �see Eqs. �A8� and �A9��.

In the following we outline the calculation of thermoelec-
tric coefficient � in the noninteracting case and its correction
due to Coulomb interaction. A detailed derivation of both can
be found in Appendixes C and D, respectively.

A. Noninteracting case

First, we consider the thermoelectric coefficient ��0� of
granular metals in the absence of interaction. The expression
for the thermoelectric coefficient in the linear-response
theory is

��0� = ı� �

adT � �
�

�=0
Q�0�. �14�

Here a is the grain size and Q�0� is the correlator of the heat
current, j��h,0� �see Fig. 1�a��, and electric current, j��e�, shown

in Fig. 2�a�. Notice, that there is an important difference
between the calculations of the thermoelectric coefficient �
and thermopower S and the calculations of the electric 
 and
thermal � conductivities in Eqs. �3a� and �3b�. Indeed, to
calculate 
 and � it was sufficient to approximate the tunnel-
ing matrix element tij

pq as a constant t which is evaluated at
the Fermi surface and neglect variations in tij

pq with energy
which occur on the scale T /	F. However, this approximation
is insufficient for calculating the thermoelectric coefficient �
and thermopower S since the dominant contribution to these
quantities vanishes due to the particle-hole symmetry such
that both quantities are proportional to the small parameter
T /	F. Since it is necessary to take into account terms of the
order of T /	F in order to obtain a nonzero result for � and S,
the corresponding expansions must be carried out to this or-
der for all quantities which depend on energy.

For granular metals the important element of the diagram
is the tunneling matrix elements tij

kq describing the coupling
between grains i and j. Therefore we derive an expression
for tij

kq in the following, assuming that i and j are nearest-
neighbor grains and tij

kq is independent of the position in the
sample. In order to calculate the energy dependence of these
elements we assume the tunneling barrier between grains to
be a delta potential. For the one-particle Hamiltonian

Ĥ=− �2

2m
d2

dx2 +���x�, with � being the strength of the potential,
the transmission rate for a single particle with energy
	p=	F+�p is

Tp = �1 +
m�2

2�2	p
�−1

� �1 +
m�2

2�2	F
�1 − �p/	F��−1

= T0�1 + T0
−1 − �p/	F�−1. �15�

Here T0= m�2

2�2	F
is the transmission rate at the Fermi level, and

we use the fact that �p
	F. Next, we consider the case of

FIG. 1. �Color online� Vertices corresponding to the thermal

current operator, Eq. �12b�; vertex �a� corresponds to ĵij
�h,0� and �b�

corresponds to ĵij
�h,1�. The solid lines denote the propagator of elec-

trons, the thick wavy line describes Coulomb interaction, the tun-
neling vertices are described by the circles, and �n=�T�2n+1� and
�m=2�mT are fermionic and bosonic Matsubara frequencies, re-
spectively �n ,m�Z�.

FIG. 2. �Color online� Diagrams describing the thermoelectric
coefficient of granular metals at temperatures T�gT�; diagram �a�
corresponds to �0 in Eq. �2a�. Diagrams �b�–�d� describe the first-
order corrections to the thermoelectric coefficient of granular metals
��1� in Eq. �25� due to the electron-electron interaction. The solid
lines denote the propagator of electrons, the wavy lines describe the
effective screened electron-electron propagator, and the �red� tri-
angles describe the elastic interaction of electrons with impurities.
The tunneling vertices are described by the circles. The sum of
diagrams �b�–�d� results in the thermoelectric coefficient correction
��1� given in Eq. �33�.
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large barriers, in this regime Tp�T0�1+�p /	F�. In granular
systems we have many channels and have to consider tun-
neling processes with energy �i in grain i and with � j in the
neighboring grain j, t2�N�Tpi

2 +Tpj

2 �. Thus, the final expres-
sion for the tunneling matrix element is

t2��i,� j� = t0
2�1 +

�i + � j

	F
� , �16�

where t0 is the constant tunneling matrix element evaluated
at the Fermi surface. For convenience we use i=1 and j=2 in
the following. Using Eq. �16� we obtain the following ex-
pression for the correlation function in Eq. �14�:

Q�0� = − set0
2T�n�e

�0� · n�h
�0�
�

�n

a2d+2� ddp1

�2��d

ddp2

�2��d� �1 + �2

2
�

��1 +
�1 + �2

	F
�G�p1,�n�G�p2,�n + �m� , �17a�

where n��
�0� is the unit vector in the direction of the current

�� �e ,h�, �n�e
�0� ·n�h

�0�
=1 /d is the result of averaging over the
angles, the summation goes over the fermionic Matsubara
frequencies �n=2�T�n+1 /2�, and G�p ,�n� is the Matsubara
Green’s function

G�p,�n� = �ı�n − �p � ı/�2����−1, �17b�

with �p=	p−	F being the electron energy with respect to the
Fermi energy �	p= p2 / �2m�� and the �energy� relaxation time
�� is defined in Eq. �13�. To shorten the notation, we neglect
the momentum argument in the following and attach the
grain index to the Green’s function G. The two � factors
under the integration in Eq. �17a� arise from the heat current,
Eq. �12b�, and the energy correction of the tunneling ele-
ment, Eq. �16�. The momentum integrals in Eq. �17a� are
transformed into energy integrals taking into account the
first-order corrections in � /	F of the Jacobian �see Eq. �A7�
of Appendix A�.

We first perform the analytical continuation over the fer-
mionic Matsubara frequencies �n=2�T�n+1 /2� in Eq.
�17a�. In order to accomplish that, the analytical structure of
diagram �a� in Fig. 2 needs to be analyzed, which gives rise
to three different regions for the Matsubara summations,
I1= �−� ;−�m� , I2= �−�m ;0� , I3= �0;��, in which we can
determine whether the Green’s function is retarded, G−���,
or advanced, G+���,

S1 = �
n�I1

G1
−��n�G2

−��n + �m�

=� − d�

4�ıT
tanh� �

2T
�G1

−�− ı� + ı��G2
−�− ı�� , �18a�

S2 = �
n�I2

G1
+��n�G2

−��n + �m� =� − d�

4�ıT
tanh� �

2T
�

��G1
−�− ı��G2

+�− ı� − ı�� − G1
−�− ı� + ı��G2

+�− ı��� ,

�18b�

S3 = �
n�I3

G1
+��n�G2

+��n + �m�

=� − d�

4�ıT
tanh� �

2T
�G1

+�− ı��G2
+�− ı� − ı�� . �18c�

To calculate ��0� in Eq. �14� we now consider the derivative
of S1+S2+S3 with respect to the bosonic frequencies � �

�� ��=0.
For brevity we omit the arguments −ı� of the Green’s func-
tions, leading to

� �

��
�

�=0

�S1 + S2 + S3�

=� − d�

4�ıT
tanh� �

2T
� �

��
� 1

��
2 G1

−G1
+G2

−G2
+� . �19�

Next, one can perform the integration over variables �1 and
�2 using Eqs. �13� and �20� and the residuum theorem

� d�1d�2g12��1,�2�G1
−G1

+G2
−G2

+

= 4�2�2�2� + ı/�0 +
d

2	F
�2� + ı/�0�2� , �20a�

with

g12��1,�2� = �1 + �2 +
d

2

��1 + �2�2

	F
. �20b�

As a result we obtain the following expression for the de-
rivative of the correlation function:

� �

��
�

�=0
Q�0� = −

�s

16ı
et0

2a2d+2��d
�0��2 1

T	F
� d�

�
�2 + �d/2 − 1�ı/��0	F��2�2

cosh2��/�2T��

= −
�3s

3ı
et0

2a2d+2��d
�0��2 T2

	F
. �21�

Here all contributions of order 1 /	F
2 or smaller are neglected

in the final expression. Substituting this result, Eq. �21�, into
Eq. �14� we finally obtain the following expression for the
noninteracting thermoelectric coefficient of granular metals:

��0� = −
s�3

3
et0

2ad+2��d
�0��2 T

	F
. �22�

One can rewrite this expression using the relations �d
�0�Dd

=gTa2−d, �d
�0�= ��ad�−1, and t0

2=gT�2 / �2��, where Dd is the
diffusion constant, gT is the tunneling conductance, and � is
the mean level spacing, giving

��0� = −
s�2

6
egTa2−d�T/	F� . �23�

B. Correction due to Coulomb interaction

Now, we consider the correction ��1� to the thermoelectric
coefficient of granular metals due to electron-electron inter-
action,
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� = ��0� + ��1�, �24�

where ��0� is given by Eq. �22�. Analogously to ��0�, ��1� can
be obtained from

��1� = ı� �

adT � �
�

�=0
�Q�1� + Q�2� + Q�3�� , �25�

where the diagrams Q�1�, Q�2�, and Q�3� contributing to ��1�

are shown in Figs. 2�b�–2�d�. Detailed calculations of ��1�

are presented in Appendix D. However, here we outline the
main steps of this derivation. These three diagrams include
the effect of elastic scattering of electron at impurities de-
scribed by diffusons,

D−1 = �����i� + �q�� , �26a�

with

�q = 2gT�2d − �a
� cos�q� · a��� , �26b�

where �a� stands for the summation over all directions and
orientations ��ae� j

�0��, and the effect of the dynamically

screened Coulomb potential Ṽ�q ,�i�=DV�q ,�i�D,

Ṽ�q,�i� =
2Ec�q�

��
2 ���i� + 4Ec�q��q����i� + �q��

,

V�q,�i� = � 1

2Ec�q�
+

2�q

��i� + �q�
�−1

, �27a�

where we use the notation

Ec�q� =
e2

ad�− ln�qa� , d = 1

�/q , d = 2

2�/q2, d = 3.
	 �27b�

Each diagram in Fig. 2 also has two types of renormalized
interaction vertices: �i� the intergrain vertex

��
�1���i� =� addq�

�2��d

2Ec�q��a
� cos�q� · a��

��
2 ���i� + 4Ec�q��q����i� + �q��

,

�28�

and �ii� the intragrain vertex

��
�2���i� =� addq�

�2��d

2Ec�q�2d

��
2 ���i� + 4Ec�q��q����i� + �q��

.

�29�

Explicitly, the contribution Q�1� in Eq. �25� �diagram �b� in
Fig. 2� is given by

Q�1� = −
s

2d
et0

2T2a2d+2��d
�0��2

� �
�n,�i

� d�1d�2g12F1
�s1s2s3s4���

�1���i� , �30a�

where the function g12 is defined in Eq. �20b� and we use the
notation

F1
�s1s2s3s4� = G1

s1��n + �m�G1
s2��n + �m + �i�

�G2
s3��n�G2

s4��n + �i� , �30b�

where si=� denote the analytic structure of the Green’s
functions implying restrictions on the frequency summation.

For the contribution Q�2� in Eq. �25� �diagram �c� in Fig.
2� we have the following expression:

Q�2� = −
s

2d
et0

2T2a2d+2��d
�0��2

� �
�n,�i

� d�1d�2g12F2
�s1s2s3���

�2���i� , �31a�

where we use the notation

F2
�s1s2s3� = �G1

s1��n + �m��2G1
s2��n + �m + �i�G2

s3��n� .

�31b�

The diagram Q�3�, shown in Fig. 2�d�, describes the con-
tribution of the correlation function with the interaction part

of the heat current operator, ĵij
�h,1� �second term in the right-

hand side of Eq. �12b��, and therefore has a different struc-
ture in comparison with contributions Q�1� and Q�2�,

Q�3� = −
s

2d
et0

2T2a2d+2��d
�0��2

� �
�n,�i

� d�1d�2g3F3
�s1s2s3��3��i,q� , �32a�

where

F3
�s1s2s3� = G1

s1��n + �m + �i�G1
s2��n + �m�G2

s3��n� ,

g3 = 2�1 +
d

2	F
��1 + �2�� . �32b�

The main contribution to ��1� from diagram Q�3� is of the
order of �T /	F�2, whereas Q�1� and Q�2� have 1 /	F contribu-
tions. Therefore we will not consider diagram Q�3� any fur-
ther but keep contributions of order T /	F only.

Thus, the first-order interaction corrections to the thermo-
electric coefficient are only generated by diagrams �b� and
�c� in Fig. 2. Substituting Eqs. �30a� and �31a� into Eq. �25�
after summation over the fermionic, �n, and bosonic, �i,
frequencies and analytical continuation, we obtained �see
Appendix D for details�

��1� = −
��0�

2�gT
� a

2�
�d� ddq ln�2Ec�q��q

T
� , �33�

where the q integration goes over the d-dimensional sphere
with radius � /a. Integrating over q in Eq. �33�, neglecting
all constants under the logarithm, in two and three dimen-
sions, we obtain the following expressions:

�2D
�1� = −

��0�

8gT
ln

EcgT

T
, �3D

�1� = −
��0�

12gT
ln

EcgT

T
, �34�

which lead to Eq. �2a�.
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V. THERMOPOWER AND FIGURE OF MERIT

Now we have the expressions for all three kinetic coeffi-
cients 
, �, and � for granular metals of order T /	F. Based
on these, we can derive other thermodynamic quantities—in
particular we discuss the thermopower �Seebeck coefficient�
and figure of merit in this section. Both quantities are rel-
evant parameters for thermocouples; the thermopower is a
measure the change in voltage due to a temperature gradient
and the figure of merit is a measure for the performance of
the device.

The thermopower is related to the kinetic coefficients as
�see Eq. �9b��

S = �/
 . �35a�

Again, we only consider terms up to the order of T /	F and
obtain the expression

S =
��0�


�0����1�

��0� −

�1�


�0�� , �35b�

which results in Eq. �4a�.
The dimensionless figure of merit is related to the kinetic

coefficients as

ZT = T�2/�
�� = S2
T/� , �36a�

giving

ZT =
�S�0��2
�0�T

��0� �1 −
��1�

��0� +

�1�


�0� + 2
S�1�

S�0�� , �36b�

resulting in Eq. �5a�, which has the lowest order �T /	F�2 �Eq.
�5b��. In Eq. �36b� ��1�, 
�1�, and S�1� are corrections to the
thermal conductivity, electrical conductivity, and the Seebeck
coefficient due to Coulomb interaction, respectively. The nu-
merical coefficient 2 in front of the last term reflects the fact
that the Seebeck coefficient appears squared in the definition
of ZT. Using Eqs. �4a� and �36b� one can see that the second
term of the right-hand side of Eq. �5a� originates due to
correction to the Seebeck coefficient, Eq. �4a�. The origin of

the third term in Eq. �5a� is due to the correction to the
thermal conductivity, �, last term on the right-hand side of
Eq. �3b�. We mention that the second term on the right-hand
side of Eq. �3b� cancels with the correction to the electrical
conductivity, Eq. �3a�, after the substitution into Eq. �36b�.

In Fig. 3 the dependences of Z on the grain size a and in
Fig. 4 on the tunneling conductance gT for two- and three-
dimensional samples are shown. Figure 5 shows the tempera-
ture dependence of the figure of merit. These plots show that
the correction term to ZT is most effective for small grain at
not very high tunneling conductance and at low tempera-
tures.

VI. DISCUSSIONS

In the presence of interaction effects and not very low
temperatures T�gT�, granular metals behave differently
from homogeneous disorder metals. However, in the absence
of interactions the result for ��0� below Eq. �2a� �or Eq. �23��
coincides with the thermoelectric coefficient of homoge-
neous disordered metals �see Appendix A�,

�hom
�0� = − �2/9�epF��0T� , �37�

with pF being the Fermi momentum. One can expect that at
low temperatures, T�gT�, even in the presence of Coulomb

FIG. 3. �Color online� Plots of the dimensionless figure of merit
Z /Z�0� vs grain size a �in nm�—for different values of the dimen-
sionless tunneling conductance gT �see legend�; the upper panel is
for the three-dimensional �3D� case and the lower for the two-
dimensional �2D�. All curves are plotted for T=100 K. At this tem-
perature, the dimensionless bare figure of merit for granular metals
is Z�0�T
10−4.
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FIG. 4. �Color online� Plots of the dimensionless figure of merit
Z /Z�0� vs tunneling conductance gT—for different values of grain
sizes a �see legend�; the upper panel is for the 3D case and the
lower for the 2D. All curves are plotted for T=100 K.
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FIG. 5. �Color online� Plots of the dimensionless figure of merit
Z /Z�0� vs temperature T for gT=5 �upper two graphs� and gT=2
�lower two graphs� and grain size a=5 and 10 nm and d=2,3.
Legends are next to the corresponding curves.
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interaction the behavior of thermoelectric coefficient and
thermopower of granular metals is similar to the behavior of
�hom and Shom; however this temperature range is beyond the
scope of the present paper. Our results for thermopower �4a�
and figure of merit �5a� show that the influence of Coulomb
interaction is most effective for small grains. The ther-
mopower S2 decreases with the grain size which is a result of
the delicate competition of the corrections of the thermoelec-
tric coefficient �2a� and the electric conductivity �3a�. In par-
ticular, if the numerical prefactor of the correction to �
would be slightly smaller, the sign of the correction to S
would change.

Above we only considered the electron contribution to the
figure of merit. At higher temperatures T�T�, where

T� � �gTcph
2 /lpha �38�

is a characteristic temperature with lph and cph being the
phonon-scattering length and phonon velocity, respectively,20

phonons will provide an independent additional contribution
to the thermal transport,

�ph = T3lph/cph
2 . �39�

However, the phonon contribution can be neglected for tem-
peratures

gT� � T � T�. �40�

A detailed study of the influence of phonons at high tempera-
tures, including room temperature, will be the subject of a
forthcoming work.

So far, we ignored the fact that the electron-electron in-
teractions also renormalize the chemical potential �. In gen-
eral, this renormalization may affect the kinetic coefficients,
since the thermal current vertex, Fig. 1, as well as the elec-
tron Green’s functions depend on �. In particular one needs
to replace ��eV�→��eV+�� in Eq. �9a�. To the first order in
the interactions, the renormalization of � only leads to cor-
rections to diagram �a� in Fig. 2. As can be easily shown, for
this diagram the renormalization of the heat and electric cur-
rent vertices is exactly canceled by the renormalization of the
two electron propagators. Therefore, the renormalization of
the chemical potential does not affect our results in the lead-
ing order.

Finally, we remark that the bare figure of merit Z�0�T for
granular metals at gT�1 and 100 K is of the order of only
10−4. Therefore these materials are not suitable for effective
thermoelectrics but should be replaced by granular semicon-
ductors with gT�1. However, the case of granular metals is
still relevant for low-temperature applications in, e.g., ther-
mocouples. Therefore we conclude this paragraph by dis-
cussing the dimensionless figure of merit ZT of granular ma-
terials at weak coupling between the grains, gT
1. In this
regime the electronic contribution to the thermal conductiv-
ity �e of granular metals was recently investigated in Ref. 24,
where it was shown that

�e � gT
2T3/Ec

2. �41�

In this regime the electric conductivity of granular metals
obeys the law18,22


 � gT exp�− Ec/T� . �42�

However, an expression for the thermoelectric coefficient in
this region is not available yet, but recently it has been pro-
posed, based on experiment, that nanostructured thermoelec-
tric materials in the low coupling region �AgPbmSbTe2+m,
Bi2Te3 /Sb2Te3, or CoSb3� �Refs. 10, 12, and 25–27� can
have higher figures of merit than their bulk counterparts.

In conclusion, we have investigated the thermoelectric co-
efficient and thermopower of granular nanomaterials in the
limit of large tunneling conductance between the grains and
temperatures T�gT�. We have shown to what extent quan-
tum and confinement effects in granular metals are important
in changing ZT depending on system parameters. We also
presented the details of our calculations.
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APPENDIX A: THERMOELECTRIC COEFFICIENT OF
HOMOGENEOUS DISORDERED METALS IN THE

ABSENCE OF INTERACTION

In order to demonstrate the important steps of our calcu-
lations, we present a derivation of the thermoelectric coeffi-
cient for homogeneous disordered metals in the absence of
interaction in this appendix. In the linear-response theory the
thermoelectric coefficient can be written as

��0� = ı� �

LdT � �
�

�=0
A�0�, �A1�

where the diagrammatic representation of the correlator A�0�

is shown in Fig. 6 with electric and heat current vertexes

je
� =

e

m
�

p

p� âp
†âp, jh

� =
1

m
�

p

p��pâp
†âp, �A2�

respectively. The sums over the momentum are transformed
into integrals �p→ � L

2� �d�ddp by which we can transform the
sum over the momentum product to �ddpe�ddphp�e · p�h

=�ddpe�ddph�p�e�2�n�e ·n�h
��p�e− p�h�� 2�
L �d, where n�� is the unit

vector in the direction of the current �� �e ,h�. Averaging
over angles gives �n�e ·n�h
=1 /d, and therefore

FIG. 6. �Color online� Lowest-order diagram for the heat-
electric current correlator for homogeneous disordered metals. The
external bosonic frequency is denoted by � �wavy lines� and the
internal fermionic frequency by � �straight lines�. The electric and
heat current vertexes are je

� and jh
�, respectively.
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A�0��k,�m� = −
s

d

e

m2T�
�n

Ld� ddp

�2��d �p� �2�p

�G�p + k,�n + �m�G�p,�n� , �A3�

where s is the spin degeneracy factor, �m is an external
bosonic Matsubara frequency, and G�p ,�n� is the
momentum-dependent Matsubara Green’s function. In the
following we only consider the case of the zero external
momentum, k=0. For the advanced �in C+� and retarded �in
C−� Green’s function, we use

G��p,�n� = �ı�n − �p � ı/�2����−1, �A4�

where �p=	p−	F is the electron energy with respect to the
Fermi energy �	p= p2 / �2m�� and the �energy� relaxation time
�� depends on the �real� frequency �.

The momentum integral in Eq. �A3� is transformed into
an energy integral as follows:

� ddp

�2��d f��p� �� =
�d2�d/2�−1md/2

�2��d �
0

�

f��2m	�	�d/2�−1d	 ,

�A5�

where �d is the value of the angular integral
��1,2,3= �2,2� ,4���. Since the Green’s function depends on
�, we need to rewrite this integral using the d	=d� and
	d/2−1=	F

d/2−1�1+� /	F�d/2−1,

�
0

�

	d/2−1d	 = 	F
d/2−1�

−	F

�

�1 + �/	F�d/2−1d�


 	F
d/2−1�

−�

�

�1 + �d/2 − 1��/	F�d� . �A6�

Combining Eqs. �A5� and �A6� we obtain

� ddp

�2��d f��p� �� 
 �d
�0��

−�

� �1 + �d

2
− 1� �

	F
� f��2m�� − 	F��d� ,

�A7�

with �d
�0�= 2d/2−1��d�

�2��d md/2	F
d/2−1 being the density of states

�DOS� at the Fermi surface.
The DOS �and ��� depends on � via

�d��� =
1

�
� ddp

�2��dIG−

=
�d

�0�

�
�1 +

�

	F
��d/2�−1� �1 + x/x̃�d/2−1

x2 + 1
dx , �A8�

with x̃=2��	F�1+� /	F� and the symbol I stands for the
imaginary part. However, the term x / x̃ is neglected in the
integral; hence ��R�x2+1�−1dx=��

��
−1 = �0

−1�d���
�d

�0� 
 �0
−1�1 + �d/2 − 1��/	F� . �A9�

For convenience we drop the momentum argument of G in
the following, as well as the −ı� argument.

Using all the above equations we finally obtain

��0� = −
2s

d

ıe

m
�d

�0�� �

��
�

�=0
�
�n

� d�

�
1

ı��n + �m� − � + ı sgn��n + �m�/�2��

��1 + �d/2 − 1��/	F���� − 	F�
1

ı�n − � + ı sgn��n�/�2��
.

�A10�

Here the derivative by the real external frequency, �, re-
quires the analytic continuation of the Matsubara expression.
For the following calculation of the �n sum and energy in-
tegral, it is convenient to introduce the notation

g� � �1 + �d/2 − 1��/	F���� − 	F�

= − �	F + �2 − d/2��2 + O��3/	F� . �A11�

Next, we split the sum over the fermionic Matsubara fre-
quencies �n=2�T�n+1 /2� into three intervals I1= �−� ;
−�m� , I2= �−�m ;0� , I3= �0;�� such that we can specify
the analytical structure of the Green’s function, i.e.,

��0� = −
2s

d

ıe

m
�d

�0�� �

��
�

�=0
� d�g�

�� �
n�I1

G−��n + �m�G−��n� + �
n�I2

G+

���n + �m�G−��n� + �
n�I3

G+��n + �m�G+��n�� .

Now, we perform the analytical continuation of the sums to
real frequencies and at the same time of the external fre-
quency,

S1 = �
n�I1

G−��n + �m�G−��n�

= �
R

− d�

4�ıT
tanh� �

2T
�G−�− ı��G−�− ı� + ı�� ,

�A12�

S2 = �
n�I2

G+��n + �m�G−��n�

= �
R

− d�

4�ıT
tanh� �

2T
�

��G+�− ı� − ı��G−�− ı�� − G+�− ı��G−�− ı� + ı��� ,

�A13�

S3 = �
n�I3

G+��n + �m�G+��n�

= �
R

d�

4�ıT
tanh� �

2T
�G+�− ı� − ı��G+�− ı�� .

�A14�

Next, we rewrite the � derivative of the integrant in terms of
� derivatives �arguments −ı� are omitted�,
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� �

��
�

�=0
G�− ı� � ı�� = �

�

��
G , �A15�

which is valid for both, advanced and retarded functions, and
therefore we can simplify

� �

��
�

�=0
�− G+�− ı� − ı��G− + G+G−�− ı� + ı���

= �G+�2G− + G+�G−�2 = −
�

��
�G+G−� ,

� �

��
�

�=0
�− G−G−�− ı� + ı��� = − G−�G−�2 =

1

2

�

��
�G−�2,

� �

��
�

�=0
�G+�− ı� − ı��G+� = − �G+�2G+ =

1

2

�

��
�G+�2.

�A16�

Using Eqs. �A15� and �A16� we can write the following:

� �

��
�

�=0
�S1 + S2 + S3� = �

R

d�

8�ıT
tanh

�

2T

�

��
��G+ − G−�2� .

�A17�

We notice that at this point the � integration should not be
done by parts, since the boundary term is important.
We can now do the � integration using the fact that
G+−G−=−�ı /��G+G−,

 ��� � � d�g�� ıG+G−

�
�2

= −� g�d�

���� − � + ı/�2����� − � − ı/�2����2

= − 2����2�4 − d� +
4 − d

4�
− 2��	F� . �A18�

Here, the higher-order terms in g� are neglected. In Eq.
�A18� we need to keep the terms proportional to �2 only;
therefore after the � expansion of �=�� we obtain

 ��� = − 2���0�2�4 − d� + �2�0�d − 2�� = − 4��0�2.

�A19�

Finally

��0� = −
s

d

ıe�d
�0�

m
�

R

d�

4�ıT
tanh� �

2T
� �

��
 ���

= −
s

2d

e

m
�d

�0� �0

T2�
R

�2d�

cosh2��/2T�

= −
2�2s

3d

e

m
�d

�0���0T� . �A20�

To perform the last integration we used the integral
� x2dx

cosh2�x� =�2 /6. In d=3 the density of states has the form

�d=3
�0� =

mpF

2�2 , leading to

�3D
�0� = −

s

9
epF��0T� . �A21�

APPENDIX B: HEAT AND ELECTRIC CURRENT
OPERATORS OF GRANULAR METALS

In this appendix we derive an expression for the heat and
electric current operators of granular metals in the presence
of Coulomb interaction. The Hamiltonian for the granular

system is Ĥ=�i�̂i where

�̂i = �
k

�kâi,k
† âi,k +

e2

2 �
j

n̂iCij
−1n̂j

+
1

2 �
j,k,q

�tij
kqâi,k

† âj,q + tji
qkâj,q

† âi,k�

� �̂i
�e� + �̂i

�c� + �̂i
�t�. �B1�

Here we introduce the notation n̂i��kâi,k
† âi,k for the number

of electron within a grain i. The creation �annihilation� op-
erators âi,k

† �âi,k� satisfy the anticommutation relations
�âi,k

† ; âj,q�+=�ij�kq and �âi,k
�†� ; âj,q

�†��+=0.
The electric current through grain i is

− ı
dn̂i

dt
= �n̂i;Ĥ� � −

ı

e
�

j

ĵij
�e�, �B2�

and the heat current through grain i is

− ı
d�̂i

dt
= ��̂i;Ĥ� � − ı�

j

ĵij
�h�. �B3�

Accordingly the total current operators are given by

j�e,h = n�e,h
�0��

i,j
ĵij

�e,h�, �B4�

where n�e,h
�0� are the unit directions of the current �electric field,

E, gradient� or heat �temperature, T, gradient� flows.

1. Electric current operator

First, we calculate the electric current. Since the number
operator of electrons n̂i commutes with the first two terms of

Ĥ in Eq. �B2�, i.e., �n̂i ;Ĥ�= �n̂i ;Ĥ�t��, we only need to cal-
culate

�n̂i;Ĥ�t�� =
1

2 �
k,i�,j,k�,q

�âi,k
† âi,k�ti�j

k�qâi�,k�
† âj,q + tji�

qk�âj,q
† âi�,k��

− �ti�j
k�qâi�,k�

† âj,q + tji�
qk�âj,q

† âi�,k��âi,k
† âi,k�

= �
j,k,q

�tij
kqâi,k

† âj,q − tji
qkâj,q

† âi,k� � Ĉi
�nt�. �B5�

As a result we get the following expression for the electric
current operator:

ĵij
�e� = ıe�

k,q
�tij

kqâi,k
† âj,q − tji

qkâj,q
† âi,k� . �B6�
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2. Heat current operator

Second we turn to the heat current, for which we need to
calculate nine commutators �see Eq. �B3��,

Ĉi
���� � ��̂i

���;Ĥ���� , �B7�

where �� �e ,c , t� and operator �̂i
��� was defined in Eq. �B1�.

Since operators n̂i commute with each other, four of the
commutators in Eq. �B7� vanish,

Ĉi
�ee� = Ĉi

�cc� = Ĉi
�ec� = Ĉi

�ce� = 0. �B8�

The heat current operator can be conveniently written as a
sum of two contributions,

ĵij
�h� = ĵij

�h,0� + ĵij
�h,1�, �B9�

where the noninteracting part ĵij
�h,0� of the heat current origi-

nates from the sum of the commutators Ĉi
�et�+ Ĉi

�te� and the

interacting part ĵij
�h,1� from the sum of Ĉi

�ct�+ Ĉi
�tc�.

a. Noninteracting part of the heat current operator

We first calculate the noninteracting part of the heat cur-

rent operator, ĵij
�h,0�. That is, we consider the sum of commu-

tators Ĉi
�et�+ Ĉi

�te�. A straightforward calculation leads to

Ĉi
�et� =

1

2 �
i�,j,k�,q,k

�k�âi,k
† âi,k�ti�j

k�qâi�,k�
† âj,q + tji�

qk�âj,q
† âi�,k��

− �ti�j
k�qâi�,k�

† âj,q + tji�
qk�âj,q

† âi�,k��âi,k
† âi,k�

= �
j,k,q

�k�tij
kqâi,k

† âj,q − tji
qkâj,q

† âi,k� , �B10�

Ĉi
�te� =

1

2 �
j,k,q,i�,k�

�k���tij
kqâi,k

† âj,q + tji
qkâj,q

† âi,k�âi�,k�
† âi�,k�

− âi�,k�
† âi�,k��tij

kqâi,k
† âj,q + tji

qkâj,q
† âi,k��

=
1

2 �
j,k,q

��qtij
kqâi,k

† âj,q + �ktji
qkâj,q

† âi,k − �ktij
kqâi,k

† âj,q

− �qtji
qkâj,q

† âi,k� . �B11�

Using Eqs. �B10� and �B11� we obtain for the sum

Ĉi
�et� + Ĉi

�te� =
1

2 �
j,k,q

���q + �k�tij
kqâi,k

† âj,q − ��k + �q�tji
qkâj,q

† âi,k� .

�B12�

As a result the noninteracting part of the heat current opera-
tor of granular metals has the form

ĵij
�h,0� = ı�

k,q

�k + �q

2
�tij

kqâi,k
† âj,q − tji

qkâj,q
† âi,k� . �B13�

b. Interacting part of the heat current operator

To obtain the expression for the interacting part of the

heat current operator ĵij
�h,1�, we need to consider the commu-

tators of the form ��̂i�j
�t� ; n̂i�, where �̂ij

�t�= 1
2�k,q�tij

kqâi,k
† âj,q

+ tji
qkâj,q

† âi,k�. Using the calculation for Ĉi
�nt� �Eq. �B5�� we get

2��̂i�j
�t� ; n̂i� = �

k,k�,q

�ti�j
k�q��ij�kqâi�,k�

† âi,k − �ii��kk�âi,k
† âj,q�

+ tji�
qk���ii��kk�âj,q

† âi,k − �ij�kqâi,k
† âi�,k���

= ��ij − �ii���
k,q

�ti�j
kq âi�,k

† âj,q − tji�
kq âj,k

† âi�,q�

= −
ı

e
��ij − �ii��ĵi�j

�e�. �B14�

For the following steps of the calculation of Ĉi
�ct� and Ĉi

�tc�, we

need the commutator �n̂m ; ĵij
�e��,

−
ı

e
�n̂m; ĵij

�e�� = �
k,q

�n̂m�tij
kqâi,k

† âj,q − tji
qkâj,q

† âi,k�

− �tij
kqâi,k

† âj,q − tji
qkâj,q

† âi,k�n̂m�

= − ��mj − �mi��
k,q

�tij
kqâi,k

† âj,q + tji
qkâj,q

† âi,k�

= 2��mi − �mj��̂ij
�t�. �B15�

To calculate the interacting part of the heat current operator

ĵij
�h,1� we need the following commutators:

4

e2 Ĉi
�ct� = 2 �

j,i�,j�

�n̂iCij
−1n̂j�̂i�j�

�t� − �̂i�j�
�t� n̂iCij

−1n̂j�

=
ı

e
�

j,i�,j�

Cij
−1���ij� − �ii��ĵi�j�

�e� n̂j + �� j j� − � ji��n̂iĵi�j�
�e� �

=
ı

e
�

j

Cij
−1��

i�

ĵi�j
�e�n̂j − �

j�

ĵij�
�e�n̂j + �

i�

n̂iĵi�j
�e� − �

j�

n̂iĵij�
�e��

=
ı

e
�
j,m

Cij
−1��ĵmi

�e� − ĵim
�e��n̂j + n̂i�ĵmj

�e� − ĵ jm
�e��� , �B16�

4

e2 Ĉi
�ct� = 2 �

j,i�,j�

��̂ij
�t�n̂i�Ci�j�

−1 n̂j� − n̂i�Ci�j�
−1 n̂j��̂ij

�t��

= −
ı

e
�

j,i�,j�

Ci�j�
−1 ��� j�j − � j�i�n̂i�ĵij

�e� + ��i�j − �i�i�ĵij
�e�n̂j��

= −
ı

e
�

j
��

i�

Ci�j
−1n̂i�ĵij

�e� + �
j�

Cjj�
−1

ĵij
�e�n̂j� − �

i�

Ci�i
−1n̂i�ĵij

�e�

− �
j�

Cij�
−1

ĵij
�e�n̂j��

= −
ı

e
�
j,m

��Cmj
−1 − Cmi

−1�n̂mĵij
�e� + �Cjm

−1 − Cim
−1�ĵij

�e�n̂m� .

�B17�

Using the symmetry relations ĵmi
�e�=−ĵim

�e� and Cmj
−1 =Cjm

−1, and

�n̂m ; ĵij
�e��=2ıe��mi−�mj��̂ij

�t� �Eq. �B15�� we obtain
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Ĉi
�ct� + Ĉi

�tc� =
ıe

4 �
j,m

�Cij
−1��ĵmi

�e� − ĵim
�e��n̂j + n̂i�ĵmj

�e� − ĵ jm
�e��� − ��Cmj

−1 − Cmi
−1�n̂mĵij

�e� + �Cjm
−1 − Cim

−1�ĵij
�e�n̂m��

=
ıe

4 �
j,m

�2Cij
−1�ĵmi

�e�n̂j + n̂iĵmj
�e�� − �Cmj

−1�n̂m; ĵij
�e��+ − Cmi

−1�ĵij
�e�; n̂m�+��

=
ıe

4 �
j,m

Cij
−1�ĵmi

�e�n̂j + n̂jĵmi
�e� − 2ıe�� jm − � ji��̂mi

�t� + n̂iĵmj
�e� + ĵmj

�e�n̂i + 2ıe��im − �ij��̂mj
�t� � − �Cmj

−1�n̂m; ĵij
�e��+ − Cmi

−1�ĵij
�e�; n̂m�+�

=
− e2

2 �
j

�− �̂ ji
�t� + �̂ ji

�t� + �̂ij
�t� − �̂ ji

�t��

=0

+
ıe

4 �
j,m

Cij
−1��ĵmi

�e�; n̂j�+ + �n̂i; ĵmj
�e��+� − �Cmj

−1�n̂m; ĵij
�e��+ − Cji

−1�ĵim
�e�; n̂j�+�

=
ıe

4 �
j,m

�Cij
−1�n̂i; ĵmj

�e��+ − Cmj
−1�n̂m; ĵij

�e��+� .
�B18�

As a result for the interaction part of the heat current operator of granular metals, we obtain

ĵij
�h,1� = −

e

4�
m

�Cim
−1�n̂i; ĵ jm

�e��+ − Cjm
−1�n̂j; ĵim

�e��+� . �B19�

So far we have omitted the last commutator Ĉi
�tt� in Eq. �B7�, which would be an additional contribution to the noninter-

acting part of the heat current operator, ĵij
�h,0� in Eq. �B13�. However, if this term is summed over i it vanishes and does not

contribute to ĵij
�h,0�. However, for completeness we present the calculation of Ĉi

�tt� here as well.

We define the commutator Ĉi
�tt� as

Ĉi
�tt� = �

j,i�,j�

��̂ij
�t��̂i�j�

�t� − �̂i�j�
�t� �̂ij

�t�� � Â − B̂ , �B20�

and simplify the first the expression for operator 4B̂,

4	̂i�j�
�t�

	̂ij
�t� = �

k,q,k�,q�

�ti�j�
k�q�âi�,k�

† âj�,q� + tj�i�
q�k�âj�,q�

† âi�,k���tij
kqâi,k

† âj,q + tji
qkâj,q

† âi,k�

= �
k,q,k�,q�

�ti�j�
k�q�tij

kq�� j�i�q�kâi�,k�
† âj,q − �i�j�k�qâi,k

† âj�,q�� + tj�i�
q�k�tij

kq��i�i�k�kâj�,q�
† âj,q − � j�j�q�qâi,k

† âi�,k��

+ ti�j�
k�q�tji

qk�� j�j�q�qâi�,k�
† âi,k − �i�i�k�kâj,q

† âj�,q�� + tj�i�
q�k�tji

qk��i�j�k�qâj�,q�
† âi,k − � j�i�q�kâj,q

† âi�,k��� + 4Â . �B21�

Moreover the final step is

Ĉi
�tt� = −

1

4 �
j,k,q

��
i�,k�

�ti�i
k�ktij

kqâi�,k�
† âj,q − tji�

qk�tij
kqâi,k

† âi�,k�� − �
j�,q�

�tjj�
qq�tij

kqâi,k
† âj�,q� − tj�i

q�ktij
kqâj�,q�

† âj,q�

+ �
i�,k�

�ti�j
k�qtji

qkâi�,k�
† âi,k − tii�

kk�tji
qkâj,q

† âi�,k�� − �
j�,q�

�tij�
kq�tji

qkâj,q
† âj�,q� − tj�j

q�qtji
qkâj�,q�

† âi,k��
= −

1

4 �
j,m,k,q,p

�tmi
pktij

kqâm,p
† âj,q + tmi

pktij
kqâm,p

† âj,q − tjm
qptij

kqâi,k
† âm,p − tjm

qptij
kqâi,k

† âm,p

+ tmj
pqtji

qkâm,p
† âi,k + tmj

pqtji
qkâm,p

† âi,k − tim
kptji

qkâj,q
† âm,p − tim

kptji
qkâj,q

† âm,p�

= −
1

2 �
j,m,k,q,p

�tmi
pktij

kqâm,p
† âj,q − tjm

qptij
kqâi,k

† âm,p + tmj
pqtji

qkâm,p
† âi,k − tim

kptji
qkâj,q

† âm,p�

=
1

2 �
j,m,k,q,p

�tjm
qptij

kqâi,k
† âm,p − tmj

pqtji
qkâm,p

† âi,k�

= �
j,m,k,q,p

tjm
qptij

kq

2
�âi,k

† âm,p − âm,p
† âi,k� . �B22�
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The underlined terms cancel since tmi
pk = tim

kp, which is also
used in the last step. If this expression is summed over i, we
can exchange indices m and i �and k and q� in the second
summand. As a result we obtain

�
i

Ĉi
�tt� = 0, �B23�

i.e., there is no additional contribution to the full heat current
operator j�h in Eq. �B4� from this term.

3. Summary: Electric and heat current operators

To summarize this appendix we explicitly write the ex-

pressions for electric ĵij
�e� and heat ĵij

�h� current operators,

ĵij
�e� = ıe�

k,q
�tij

kqâi,k
† âj,q − tji

qkâj,q
† âi,k� , �B24�

ĵij
�h� = ĵij

�h,0� + ĵij
�h,1�,

ĵij
�h,0� = ı�

k,q

�k + �q

2
�tij

kqâik
† âjq − tji

qkâjq
† âik� ,

ĵij
�h,1� = −

e

4�
m
� �n̂i; ĵ jm

�e��+

Cim
−

�n̂j; ĵim
�e��+

Cjm
� . �B25�

APPENDIX C: THERMOELECTRIC COEFFICIENT OF
GRANULAR METALS IN THE ABSENCE OF

INTERACTION

In this appendix we consider the thermoelectric coeffi-
cient ��0� of granular metals in the absence of interaction in
analogy to Appendix A. The expression for the thermoelec-
tric coefficient in the linear-response theory is

��0� = ı� �

adT � �
�

�=0
Q�0�. �C1�

Here a is the grain size and Q�0� is the correlator of the heat
current, j�h

�0� �see also Fig. 1�a��, and electric current, j�e,
shown in Fig. 7.

For granular metals the important element of the diagram
is the tunneling matrix elements tij

kq describing the coupling
between grains i and j. Therefore we derive an expression
for tij

kq in the following, assuming that i and j are nearest-
neighbor grains and tij

kq is independent of the position in the
sample. In order to calculate the energy dependence of these
elements we assume the tunneling barrier between grains to
be a delta potential. For the one-particle Hamiltonian

Ĥ=− �2

2m
d2

dx2 +���x� the transmission rate for a single particle
with energy 	p=	F+�p is

Tp = �1 +
m�2

2�2	p
�−1

� �1 +
m�2

2�2	F
�1 − �p/	F��−1

= T0�1 +
2�2	F

m�2 − �p/	F�−1

. �C2�

Here T0�1+ m�2

2�2	F
�−1 is the transmission rate at 	p=	F and we

use the fact that �p
	F. Next, we consider the case of large
barriers, in this regime Tp�T0�1+�p /	F�. In granular sys-
tems we have many channels and have to consider tunneling
processes with energy �1 in grain i=1 and with �2 in grain
j=2, t2�N�Tp1

2 +Tp2

2 �. So, we obtain

t2��1,�2� � t0
2�1 +

�1 + �2

	F
� . �C3�

Therefore we have the following expression for correlation
function in Eq. �C1�:

Q�0� = − set0
2T�n�e

�0� · n�h
�0�
�

�n

a2d+2� ddp1

�2��d� ddp2

�2��d� �1 + �2

2
�

��1 +
�1 + �2

	F
�G�p1,�n�G�p2,�n + �m�


 −
s

2d
et0

2Ta2d+2��d
�0��2�

�n

� d�1d�2g��1,�2�

�G��1,�n�G��2,�n + �m� , �C4�

where n��
�0� is the unit vector in direction of the current

�� �e ,h�, �n�e
�0� ·n�h

�0�
=1 /d is the result of averaging over the
angles, the summation goes over the fermionic Matsubara
frequencies �n=2�T�n+1 /2�, and G�p ,�n� is the Green’s
function defined in Eq. �A4� of Appendix A with momenta/
energies pi /�i of grain i. To shorter the notation in the fol-
lowing we neglect the momentum argument and attach the
grain index to G. In Eq. �C4� we introduce the notation

FIG. 7. �Color online� Lowest-order diagram for the heat-
electric current correlator of granular metals. The external bosonic
frequency is denoted by � �wavy lines� and the internal fermionic
frequency by �. The electric and heat current vertexes are je

� and jh
�,

respectively. The � denote the possible analytical structure of the
Green’s functions �straight lines�.
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g��1,�2� = ��1 + �2��1 +
�1 + �2

	F
��1 + �d

2
− 1� �1

	F
�

��1 + �d

2
− 1� �2

	F
� . �C5�

The factors in this order arise from the heat current vertex
Eq. �12c�, the energy correction to tunneling elements, Eq.

�16�, and corrections to the DOS due to finite Fermi energy
Eq. �A7�. In the linear order in � /	F we obtain

g��1,�2� = �1 + �2 +
d

2

��1 + �2�2

	F
. �C6�

We first perform the analytical continuation in Eq. �C4�
�for convenience the grain index is written as an index to the
Green’s functions�,

� d�1d�2g��1,�2�� �
n�I1

G1
−��n�G2

−��n + �m�

S1

+ �
n�I2

G1
+��n�G2

−��n + �m�

S2

+ �
n�I3

G1
+��n�G2

+��n + �m�

S3

� .

�C7�

After analytical continuation we obtain

S1 = −� d�

4�ıT
tanh� �

2T
�G1

−�− ı� + ı��G2
−�− ı�� , �C8�

S2 = −� d�

4�ıT
tanh� �

2T
��G1

−�− ı��G2
+�− ı� − ı�� − G1

−�− ı� + ı��G2
+�− ı��� , �C9�

S3 = −� d�

4�ıT
tanh� �

2T
�G1

+�− ı��G2
+�− ı� − ı�� . �C10�

Now we consider the derivative of the sum of �S1+S2+S3� with respect to the bosonic frequency � �
�� ��=0. For brevity we omit

arguments −ı� of the Green’s functions,

∂

∂Ω

∣∣∣∣
Ω=0

(S1 + S2 + S3) =

∫
dω

4πıT
tanh

( ω

2T

)[(
∂

∂ω
G−

1

)
G−

2 − G−
1

(
∂

∂ω
G+

2

)
−

(
∂

∂ω
G−

1

)
G+

2 + G+
1

(
∂

∂ω
G+

2

)]

=

∫
dω

4πıT
tanh

( ω

2T

)
⎡
⎢⎢⎢⎣
(

∂

∂ω
G−

1

) (
G−

2 − G+
2

)
+

(
∂

∂ω
G+

2

) (
G+

1 − G−
1

)
︸ ︷︷ ︸

exchange indices

⎤
⎥⎥⎥⎦

=

∫
dω

4πıT
tanh

( ω

2T

) (
G−

2 − G+
2

) ∂

∂ω

(
G−

1 − G+
1

)
︸ ︷︷ ︸

1
2 [(G−

2 −G+
2 ) ∂

∂ω (G−

1 −G+
1 )+(G−

1 −G+
1 ) ∂

∂ω (G−

2 −G+
2 )]

=

∫
dω

4πıT
tanh

( ω

2T

) ∂

∂ω

[(
G−

1 − G+
1

) (
G−

2 − G+
2

)]
=

∫ −dω

4πıT
tanh

( ω

2T

) ∂

∂ω

[
1

τ2
ω

G−
1 G+

1 G−
2 G+

2

]
.

�C11�

Now one can perform the integration over variables �1 and �2 using Eqs. �C7� and �C11�, and the residuum theorem
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� d�1d�2g��1,�2�G1
−G1

+G2
−G2

+ =� d�1d�2

�1 + �2 + d
2

��1+�2�2

�F

�� − �1 − ı/�2����� − �1 + ı/�2���

�1,0=�+ı/�2��

�� − �2 − ı/�2����� − �2 + ı/�2���

= 2�ı� d�2

� + ı/�2�� + �2 + d
2�F

�� + ı/�2�� + �2�2

�− ı/���� − �2 − ı/�2����� − �2 + ı/�2���

�2,0=�+ı/�2��

= 4�2�2�2� + ı/� +
d

2�F
�2� + ı/��2� ,

�C12�

where the �i,0 values below the braces denote the poles in the complex plane used to perform the integration. As a result we
obtain the following expression for the derivative of the correlation function:

� �

��
�

�=0
Q�0� =

s

2d
et0

2a2d+2��d
�0��2� d�

8�ı
tanh� �

2T
� �

��
�4�2�2� + ı/� +

d

2	F
�2� + ı/��2��

=
�s

4ıd
et0

2a2d+2��d
�0��2� d� tanh� �

2T
� �

��
� d

2	F
�2� + ı/�0��d/2 − 1��/	F��2�

= −
�s

4ıd
et0

2a2d+2��d
�0��2�2T�−1 d

2	F
� d�

�2 + �d/2 − 1�ı/��0	F��2�2

cosh2��/�2T��

= −
�s

4ıd
et0

2a2d+2��d
�0��2�2T�2 4d

2	F

�2

6
. �C13�

In the second line in Eq. �C13� the derivative is taken into
account �removing the boundary terms of the partial integra-
tion� and the contributions of order 1 /	F

2 or smaller are ne-
glected in the last line.

Finally, we obtain the following expression for the nonin-
teracting thermoelectric coefficient of granular metals:

��0� = −
s�3

3
et0

2ad+2��d
�0��2 T

	F
. �C14�

One can rewrite this expression using the relations �d
�0�Dd

=ga2−d, �d
�0�= ��ad�−1, and t0

2=g�2 / �2��, where Dd is the dif-
fusion constant, g is the tunneling conductance, and � is the
mean level spacing, giving

��0� = −
s�2

6
egTa2−d�T/	F� . �C15�

APPENDIX D: THERMOELECTRIC COEFFICIENT OF
GRANULAR METALS WITH INTERACTION

In this appendix we consider the correction ��1� to the
thermoelectric coefficient of granular metals due to the
electron-electron interaction, i.e.,

� = ��0� + ��1�, �D1�

where ��0� was calculated in Appendix C, Eq. �C14�. The
structure of the diagrams Q�1�, Q�2�, and Q�3� contributing to
��1� are shown in Fig. 2 and we can write

��1� = ı� �

adT � �
�

�=0
�Q�1� + Q�2� + Q�3�� . �D2�

These diagrams include the effect of elastic scattering of
electron at impurities described by diffusons, D−1=�����i�
+�q��, and the effect of the dynamically screened Coulomb

potential Ṽ�q ,�i�=DV�q ,�i�D,

Ṽ�q,�i� =
2Ec�q�

��
2 ���i� + 4Ec�q��q����i� + �q��

,

V�q,�i� = � 1

2Ec�q�
+

2�q

��i� + �q�
�−1

. �D3�

The renormalized interaction vertices are �i� intergrain

��
�1���i� = ad� dq�

�2��d Ṽ�q,�i��a
� cos�q� · a��

=� addq�

�2��d

2��
−2Ec�q��a

� cos�q� · a��

���i� + 4Ec�q��q����i� + �q��
,

�D4�

and �ii� intragrain
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��
�2���i� = ad2d� dq�

�2��d Ṽ�q,�i�

=� dddq�

�2��d

4d��
−2Ec�q�

���i� + 4Ec�q��q����i� + �q��
,

�D5�

with �q=2gT�2d−�a�cos�q� ·a��� where �a� stands for summa-
tion over all directions and orientations ��ae� j

�0��, and

Ec�q� =
e2

2C�q�
=

e2

ad�− ln�qa� , d = 1

�/q , d = 2

2�/q2, d = 3.
	 �D6�

Explicitly, the contribution Q�1� in Eq. �D2� is given by

Q�1� = −
s

2d
et0

2T2a2d+2��d
�0��2 �

�n,�i

� d�1d�2g12F1
�s1s2s3s4���

�1�

���i� = Q�1,��� + Q�1,���, �D7�

with g12�g��1 ,�2� defined in Eq. �C6� of Appendix C. Here
we introduce the function

F1
�s1s2s3s4� = G1

s1��n + �m�G1
s2��n + �m + �i�G2

s3��n�

�G2
s4��n + �i� , �D8�

where si denote the analytic structure of the Green’s func-
tions implying restrictions on the frequency summation—in
principle there are 16 different combinations of the si’s, see
Fig. 8. However, only the two diagrams Q�1,��� and Q�1,���

contribute to the correction ��1�. The other analytical struc-
tures do not have valid frequency domains or poles are lo-
cated in only one-half plane of C. For the contribution Q�2� in
Eq. �D2�, Fig. 9, we have the following expression:

Q�2� = −
s

2d
et0

2T2a2d+2��d
�0��2 �

�n,�i

� d�1d�2g12F2
�s1s2s3���

�2���i�

= 2�Q�2,�+� + Q�2,�−� + Q�2,�−�� , �D9�

where

F2
�s1s2s3� = �G1

s1��n + �m��2G1
s2��n + �m + �i�G2

s3��n� .

�D10�

Due to symmetry all three contributing diagrams in the right-
hand side of Eq. �D9� have a factor of 2. Again, out of the
eight possible combinations for s1, s2, and s3 only three
combinations—Q�2,�+�, Q�2,�−�, Q�2,�−�—have a valid or
nonzero analytical structure.

The diagram Q�3�, shown in Fig. 10, describes the contri-
bution of the correlation function with the interaction part of

the heat current operator, ĵij
�h,1� �see Appendix B�, and has

therefore a different structure in comparison with contribu-
tions Q�1� and Q�2�,

Q�3� = −
s

2d
et0

2T2a2d+2��d
�0��2 �

�n,�i

�� d�1d�2g3F3
�s1s2s3��3��i,q� , �D11�

with

F3
�s1s2s3� = G1

s1��n + �m + �i�G1
s2��n + �m�G2

s3��n�
�D12�

and

g3��1,�2� = 2�1 +
�1 + �2

	F
��1 + �d

2
− 1� �1

	F
�

��1 + �d

2
− 1� �2

	F
�

= 2�1 +
d

2	F
��1 + �2�� + O��2/	F

2� . �D13�

Since the linear part of function g3��1 ,�2� has a factor 	F
−1,

FIG. 8. �Color online� Diagram describing the correction to the
thermoelectric coefficient due to the electron-electron interaction
corresponding to the term Q�1� in Eq. �D2�. The external bosonic
frequency is denoted by � �wavy lines� and the internal fermionic
frequency by � �straight lines�. The electric and heat current verti-
ces are je

� and jh
� �without Coulomb contribution�, respectively. The

�red� triangles denote the diffusons D and the thick wavy line de-
notes the screened Coulomb interaction.

FIG. 9. �Color online� Diagram describing the correction to the
thermoelectric coefficient due to the electron-electron interaction
corresponding to the term Q�2� in Eq. �D2�. All notations are the
same as in Fig. 8

FIG. 10. �Color online� Diagram describing the correction to the
thermoelectric coefficient due to the electron-electron interaction
corresponding to the term Q�3� in Eq. �D2�. All notations are the

same as in Fig. 8, but here the heat vertex corresponds to ĵi
h,1 and

the diagram has only one diffuson.
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the main contribution to ��1� from the diagram Q�3� is of the
order of T2 /	F

2 , whereas Q�1� and Q�2� have 1 /	F contribu-
tions, which we only consider here. Therefore we will not
consider diagram Q�3� any further. In the following we dis-
cuss the five diagrams contributing to ��1� in details, espe-
cially their analytical structure and the resulting restrictions
on the frequency summations: Q�1,���, Q�1,���, Q�2,�+�,
Q�2,�−�, and Q�2,�−�.

1. Calculation of contribution Q(1,±±) in Eq. (D7)

Here we discuss the contribution Q�1,��� introduced in
Eq. �D7�. The analytical structure of this diagram �Fig. 8�,

defined by indexes s1 to s4 in Eq. �D7�, demands

�n + �m � 0, �n + �m + �i � 0,

�n � 0, �n + �i � 0. �D14�

These inequalities define the limits of frequency summa-
tions,

0 � �n � − �m − �i and �i � − �m. �D15�

First, we calculate the � integrals in Eq. �D7� using the resi-
due theorem,

� d�1d�2

�1 + �2 + d
2

��1+�2�2

�F

�ı��n + �m� − �1 + ı/�2����ı��n + �m + �i� − �1 − ı/�2���

�1,0=ı��n+�m+�i�−ı/�2���C−

�ı�n − �2 + ı/�2���

�2,0=ı�n+ı/�2���C+

�ı��n + �i� − �2 − ı/�2���

= − �2�ı�2
ı�2�n + �m + �i� − d

2�F
�2�n + �m + �i�2

�− ı�i + ı/���ı�i − ı/��
=

4�2

��i − 1/��2�ı�2�n + �m + �i� −
d

2�F
�2�n + �m + �i�2�

=
4�2

��i − 1/��2g�ı�2�n + �m + �i�� � 4�2�2g�ı�2�n + �m + �i�� ,
�D16�

where in the last line we introduce the function

g�z� = z + �d/�2	F��z2. �D17�

For the final approximation we used the fact that ��i��
1. The poles for the residual are written below the underbraces.
Using the result of integration over �1 and �2 in Eq. �D16�, we can simplify the expression for this diagram to

Q�1,��� = −
2�2s

d
et0

2T2�2a2d+2��d
�0��2 �

0��n�−�m−�i

�i�−�m

��
�1���i�g�ı�2�n + �m + �i�� . �D18�

2. Calculation of contribution Q(1,ÂÂ) in Eq. (D7)

Here we discuss the contribution Q�1,��� defined in Eq. �D7�. The analytical structure of this diagram demands

�n + �m � 0, �n + �m + �i � 0,

�n � 0, �n + �i � 0, �D19�

which defines the limits of the frequency summations,

− �i � �n � − �m and �i � �m. �D20�

We first perform the � integrals in Eq. �D7�,

� d�1d�2��1 + �2 + d
2

��1+�2�2

�F
�

�ı��n + �m� − �1 − ı/�2����ı��n + �m + �i� − �1 + ı/�2���

�1,0=ı��n+�m+�i�+ı/�2���C+

�ı�n − �2 − ı/�2���

�2,0=ı�n−ı/�2���C−

�ı��n + �i� − �2 + ı/�2���

= 4�2
ı�2�n + �m + �i� − d

2�F
�2�n + �m + �i�2

�− ı�i − ı/���ı�i + ı/��
=

4�2g�ı�2�n + �m + �i��
��i + 1/��2 � 4�2�2g�ı�2�n + �m + �i�� .

�D21�
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Substituting the result of Eq. �D21� back into Eq. �D7� we
obtain

Q�1,��� = −
�2s

d
et0

2T2�2a2d+2��d
�0��2 �

�i��jvvn�−�m

�i�−�m

��
�1�

���i�g�ı�2�n + �m + �i�� . �D22�

3. Calculation of contribution Q(2,±+) in Eq. (D9)

Here we discuss the contribution Q�2,�+� introduced in Eq.
�D9�. The analytical structure of this diagram demands

�n + �m � 0, �n + �m + �i � 0,

�n � 0, �D23�

which defines the limits of frequency summations,

0 � �n � − �m − �i and �i � − �m. �D24�

For symmetry reasons we write both versions of the integrals
�diffusons on grains 1 and 2� and therefore already take the
factor 2 in front of the Q�2� subdiagrams into account in the
right-hand side of Eq. �D9�. Furthermore we introduce the
short notation for the Green’s functions,

a���� � ı��n + �m� − � � ı/�2�� ,

b���� � ı��n + �m + �i� − � � ı/�2�� ,

c���� � ı�n − � � ı/�2�� . �D25�

In the following we only need the poles of functions b����
and c����: ��

�b�= ı��n+�m+�i�� ı / �2���C� and ��
�c�

= ı�n� ı / �2���C�. We also use the function g12 introduced
in Eq. �D9�.

Therefore the � integrals in Eq. �D9� can be written as

� d�1d�2g��1 + �2���a+
2��1�b−��1�c+��2��−1 + �a+

2��2�b−��2�c+��1��−1�

=� d�1d�2g��1 + �2�
a+

2��2�b−��2�c+��1� + a+
2��1�b−��1�c+��2�

a+
2��1�b−��1�c+��1�a+

2��2�b−��2�c+��2�

= 2�ı� d�1
1

a+
2��1�b−��1�c+��1��g��1 + �+

�c��
c+��1�

2
−

g��1 + �−
�b��a+

2��1�b−��1�
a+

2��−
�b�� �

= 2�ı� d�1� g��1 + �+
�c��

2a+
2��1�b−��1�

−
g��1 + �−

�b��
a+

2��−
�b��c+��1�� . �D26�

Here we executed the �2 integral and used the fact that the
first term in the second line only has one pole in C+ �factor
�ı�. We are left with two terms where the second one only
has a single �1 pole in C+ which gives another factor �ı.
However, both terms give the same result,

4�2g��+
�c� + �−

�b��
a+

2��−
�b��

=
4�2g�ı�2�n + �m + �i��

�− ı�i + ı/��2 


− 4�2�2g�ı�2�n + �m + �i�� .

�D27�

Substituting the result of Eq. �D27� into Eq. �D9� we obtain

2Q�2,�+� =
2�2s

2d
et0

2T2�2a2d+2��d
�0��2 �

0��n�−�m−�i

�i�−�m

��
�2�

���i�g�ı�2�n + �m + �i�� . �D28�

The notation introduced in this appendix allows us to write
down the Q�2,�−� and Q�2,�−� contributions in Eq. �D9� by
just changing the + /− indices.

4. Calculation of contribution Q(2,Â−) in Eq. (D9)

Here we discuss the contribution Q�2,�−� introduced in Eq.
�D9�. The analytical structure of this diagram demands

�n + �m � 0, �n + �m + �i � 0,

�n � 0, �D29�

which defines the limits of frequency summations,

− �m − �i � �n � − �m and �i � 0. �D30�

Using the notations introduced in Eq. �D25� the � integrals in
Eq. �D9� can be calculated as
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� d�1d�2g��1 + �2���a−
2��1�b+��1�c−��2��−1 + �a−

2��2�b+��2�c−��1��−1�

=� d�1d�2g��1 + �2�
a−

2��2�b+��2�c−��1� + a−
2��1�b+��1�c−��2�

a−
2��1�b+��1�c−��1�a−

2��2�b+��2�c−��2�

= 2�ı� d�1
1

a−
2��1�b+��1�c−��1��− g��1 + �−

�c��
c−��1�

2
+

g��1 + �+
�b��a−

2��1�b+��1�
a−

2��+
�b�� �

= 2�ı� d�1�−
g��1 + �−

�c��
2a−

2��1�b+��1�
+

g��1 + �+
�b��

a−
2��+

�b��c−��1��
= 4�2g��−

�c� + �+
�b��

a−
2��+

�b��

 − 4�2�2g�ı�2�n + �m + �i�� . �D31�

Substituting the result of Eq. �D31� into Eq. �D9� we obtain

2Q�2,�−� =
2�2s

d
et0

2T2�2a2d+2��d
�0��2 �

−�m−�i��n�−�m

�i�0

��
�2���i�g�ı�2�n + �m + �i�� . �D32�

5. Calculation of contribution Q(2,±−) in Eq. (D9)

Here we discuss the contribution Q�2,�−� introduced in Eq. �D9�. The analytical structure of this diagram demands

�n + �m � 0, �n + �m + �i � 0,

�n � 0, �D33�

which defines the limits of frequency summations,

− �m � �n � 0 and �i � − �m, �D34�

and the disjunct region

− �m � �n � − �m − �i and − �m � �i � 0. �D35�

Using the notations introduced in Eq. �D25� the � integrals in Eq. �D9� for this diagram can be calculated as

� d�1d�2g��1 + �2���a+
2��1�b−��1�c−��2��−1 + �a+

2��2�b−��2�c−��1��−1�

=� d�1d�2g��1 + �2�
a+

2��2�b−��2�c−��1� + a+
2��1�b−��1�c−��2�

a+
2��1�b−��1�c−��1�a+

2��2�b−��2�c−��2�

= 2�ı� d�1
1

a+
2��1�b−��1�c−��1��− g��1 + �−

�c��
c−��1�

2
+

g��1 + �−
�b��a+

2��1�b−��1�
a+

2��−
�b�� �

= 2�ı� d�1�−
g��1 + �−

�c��
2a+

2��1�b−��1�
−

g��1 + �−
�b��

a+
2��−

�b��c−��1��
= − 4�2g��−

�c� + �−
�b��

a+
2��−

�b��


 4�2�2g�ı�2�n + �m + �i − 1/��� . �D36�

Substituting the result of Eq. �D36� into Eq. �D9�, taking into account the two disjunct regions for the frequency summations,
we obtain

2Q�2,�−� =
2�2s

d
et0

2T2�2a2d+2��d
�0��2� �

−�m��n�0

�i�−�m

+ �
−�m��n�−�m−�i

−�m��i�0
���

�2���i�g�ı�2�n + �m + �i − 1/��� . �D37�
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6. Analytical continuation

Here we combine all five contributions to calculate the correction ��1�, Q�1,��� ,Q�1,��� ,Q�2,�+� ,Q�2,�−�, and Q�2,�−� intro-
duced in the right-hand sides of Eqs. �D7� and �D9� and discussed in Appendix D, Secs. D 1–D 5. We focus in particular on
the analytical continuation of the Matsubara to real frequencies, both for the fermionic and bosonic frequencies. Using Eqs.
�D18�, �D22�, �D28�, �D32�, and �D37� one can write

Q�1� + Q�2� = Q�1,��� + Q�1,��� + 2�Q�2,�+� + Q�2,�−� + Q�2,�−��

= �T� �
0��n�−�m−�i

�i�−�m

�2��
�1���i�g�ı�2�n + �m + �i�� − �

−�i��n�−�m

�i�−�m

�2��
�1���i�g�ı�2�n + �m + �i��

+ �
0��n�−�m−�i

�i�−�m

�2��
�2���i�g�ı�2�n + �m + �i�� + �

−�i��n�−�m

�i�0

�2��
�2���i�g�ı�2�n + �m + �i��

− �
−�m��n�0

�i�−�m

�2��
�2���i�g�ı�2�n + �m + �i − 1/��� − �

−�m��n�−�m−�i

−�m��i�0

�2��
�2���i�g�ı�2�n + �m + �i − 1/���� ,

�D38�

where we introduced the notation �= 2�2s
d et0

2Ta2d+2��d
�0��2, and the functions ��

�1���i� and ��
�2���i� were defined in Eqs. �D4�

and �D5�, respectively.
Next, we perform the summation over fermionic frequencies �n in Eq. �D38� by shifts and the corresponding analytical

continuation,

�
0��n�−�m−�i

�i�−�m

f��n,�i� = � �
�n�0

�i�−�m

− �
�n�−�m−�i

�i�−�m

� f��n,�i� = �
�n�0

�i�−�m

�f��n,�i� − f��n − �m − �i,�i�� ,

�
−�i��n�−�m

�i�−�m

f��n,�i� = � �
�n�−�m

�i��m

− �
�n�−�i

�i��m

� f��n,�i� = �
�n�0

�i��m

�f��n − �m,�i� − f��n − �i,�i�� ,

�
−�m−�i��n�−�m

�i�0

f��n,�i� = � �
�n�−�m

�i�0

− �
�n�−�m−�i

�i�0
� f��n,�i� = �

�n�0

�i�0

�f��n − �m,�i� − f��n − �i − �m,�i�� ,

�
−�m��n�0

�i�−�m

f��n,�i� = � �
�n�0

�i�−�m

− �
�n�−�m

�i�−�m

� f��n,�i� = �
�n�0

�i�−�m

�f��n,�i� − f��n − �m,�i�� ,

�
−�m��n�−�m−�i

−�m��i�0

f��n,�i� = � �
�n�−�m−�i

−�m��i�0

− �
�n�−�m

−�m��i�0
� f��n,�i� = �

�n�0

−�m��i�0

�f��n − �m − �i,�i� − f��n − �m,�i��

= �
�n�0

�i�0

�f��n − �m − �i,�i� − f��n − �m,�i�� − �
�n�0

�i�−�m

�f��n − �m − �i,�i� − f��n − �m,�i�� .

�D39�

Here the function f��n ,�i� is the product of the functions �2��
�����i� and g. For the analytic continuation we need to consider

the � dependence of function ��
�����i�, in particular we can use the fact that �which follows directly from the definition of

functions �0
��� in Eqs. �D4� and �D5��
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�0
����0

2 = ��
�����

2 , �D40�

where �0
��� is the same as ��

��� but with �� replaced by �0 and is therefore � independent. Using Eq. �D40�, we obtain

Q�1� + Q�2� = Q�1,��� + Q�1,��� + 2�Q�2,�+� + Q�2,�−� + Q�2,�−��

=
�T

4�ıT�− �
�i�−�m

��0
�1���i� − �0

�2���i���0
2� d� tanh� �

2T��g�2� + ı��m + �i�� − g�2� − ı��m + �i���

+ �
�i��m

�0
�1���i��0

2� d� tanh� �

2T��g�2� + ı�− �m + �i�� − g�2� + ı��m − �i���

− �
�i�0

�0
�2���i��0

2� d� tanh� �

2T��g�2� + ı�− �m + �i�� − g�2� − ı��m + �i���

+ �
�i�−�m

�0
�2���i��0

2� d� tanh� �

2T��g�2� + ı��m + �i − 1/��� − g�2� + ı�− �m + �i − 1/����

+ �
�i�0

�0
�2���i��0

2� d� tanh� �

2T��g�2� − ı��m + �i + 1/��� − g�2� + ı�− �m + �i − 1/����

− �
�i�−�m

�0
�2���i��0

2� d� tanh� �

2T��g�2� − ı��m + �i + 1/��� − g�2� + ı�− �m + �i − 1/���� .� �D41�

Next, we consider the integrands in Eq. �D41� and introduce the short-hand notations

a1 � g�2� + ı��m + �i�� − g�2� − ı��m + �i�� = 2ı��m + �i��1 + 2d�/	F� ,

a2 � g�2� + ı�− �m + �i�� − g�2� + ı��m − �i�� = 2ı��i − �m��1 + 2d�/	F� ,

a3 � g�2� + ı�− �m + �i�� − g�2� − ı��m + �i�� = 2ı�i + 2�id�2�ı + �m�/	F,

a4 � g�2� + ı��m + �i − 1/��� − g�2� + ı�− �m + �i − 1/��� = 2�mı + 2�md/	F�1/�� + 2ı� − �i� ,

a5 � g�2� − ı��m + �i + 1/��� − g�2� + ı�− �m + �i − 1/��� = − 2ı�i − 2d�i/	F�1/�� + 2ı� − �m� . �D42�

Now, we extract only the terms that are linear in � in Eq. �D42� and of order 1 /	F �thus the �� in a4 and a5 does not give a
contribution�. Therefore we obtain

a1 � 2�ı��m + �i�2d/	F,

a2 � 2�ı��i − �m�2d/	F,

a3 � 2�ı�i2d/	F,

a4 � 2�ı�m2d/	F,

a5 � − 2�ı�i2d/	F. �D43�

Substituting the result of Eqs. �D43� back into Eq. �D41� we obtain
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Q�1� + Q�2� = Q�1,��� + Q�1,��� + 2�Q�2,�+� + Q�2,�−� + Q�2,�−��

=
2�0

2ı2d�T

4�ıT	F
�− �

�i�−�m

��0
�1���i� − �0

�2���i��� d� tanh��/2T����m + �i�

+ �
�i��m

�0
�1���i�� d� tanh��/2T����i − �m� − �

�i�0
��

�2���i�� d� tanh��/2T���i

+ �
�i�−�m

�0
�2���i�� d� tanh��/2T���m − �

�i�0
�0

�2���i�� d� tanh��/2T���i

+ �
�i�−�m

�0
�2���i�� d� tanh��/2T���i�

= �̃�− �
�i�−�m

��0
�1���i� − �0

�2���i����m + �i� + �
�i��m

�0
�1���i���i − �m� − �

�i�0
�0

�2���i��i

+ �
�i�−�m

�0
�2���i��m − �

�i�0
�0

�2���i��i + �
�i�−�m

�0
�2���i��i� . �D44�

In the last two lines of Eq. �D44� we introduced the notation �̃=
�0

2d�

�	F
�d�� tanh�� /2T� where we use the fact that

�d�� tanh�� /2T�→− ��T�2

3 , neglecting the infinite boundary terms of the partial integration.
Using the fact that the functions �0

�2���i� in Eq. �D44� depend only on the absolute value of the bosonic frequency �, we
finally obtain

Q�1� + Q�2� = − 2�1 �
�i�−�m

��0
�1���i� − �0

�2���i����m + �i� , �D45�

where we use the notation �1=− 2�3s
3 e��0t0�d

�0�ad+1�2 T3

	F
. The internal frequency summation is also done by analytical continu-

ation, but for bosonic frequencies �i→−ı�̃+�. Before the final integration we should take the external frequency derivative
and finally calculate the q integrals of the �0 functions. Using Eqs. �D4� and �D5� we have

�0
�1���i� − �0

�2���i� = ad� dq

�2��d

2Ec�q��2d − �a
� cos�q · a��

�0
2���i� + 4Ec�q��q����i� + �q��

. �D46�

Using Eq. �D46� one can calculate the sum over the internal bosonic frequencies �i in Eq. �D45�,

S� = �
�i�−�m

�m + �i

���i� + 4Ec�q��q����i� + �q��

= �
�i�0

�i

�− �i + �m + 4Ec�q��q��− �i + �m + �q��

=� �− 4�ıT�−1�− ı�̃�coth��̃/2T�d�̃

�ı�̃ + �m + 4Ec�q��q��ı�̃ + �m + �q��

=� �− 4�T�−1x coth�x�dx

�x − ı
2T ��m + 4Ec�q��q���x − ı

2T ��m + �q��� . �D47�

Only the terms proportional to the external frequency �m in Eq. �D47� contribute to the correction of the thermoelectric
coefficient ��1� in Eq. �D2�. Taking the derivative of both sides of Eq. �D47� we obtain
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� �

��
�

�=0
S� = −

1

4�T
� � �

��
�

�=0

x coth�x�dx

�x − �
2T − ı

T2Ec�q��q��x − �
2T − ı

2T�q��

= −
1

8�T2� x coth�x�dx� 1

�x − ıa�2�x − ıb�
+

1

�x − ıa��x − ıb�2�
= −

1

8�T2� x coth�x�dx�2x − ı�a + b��
�x − ıa�2�x − ıb�2 � −

1

8�T2 Ia,b, �D48�

where a=2Ec�q��q /T and b=�q� / �2T�. Finally, we use the approximation

x coth�x� 
 � 1, �x� � 1

�x� , �x� ! 1,
� �D49�

and obtain for the integral Ia,b in Eq. �D48� the following result:

Ia,b = ı
ln��1 + a2�/�1 + b2��

�a − b�
. �D50�

For a�1�b,

Ia,b = ı
2 ln a

a
= ı

T ln�2Ec�q��q/T�
Ec�q��q

. �D51�

Thus, for Eq. �D48� we obtain

� �

��
�

�=0
S� =

− ı

8�T

ln�2Ec�q��q/T�
Ec�q��q

. �D52�

Substituting Eq. �D52� into Eq. �D46� we obtain for the correction to the thermoelectric coefficient the following result:

��1� = −
�̃

2�T2�2��d�0
2� dq

�2d − �a
� cos�q · a��ln�2Ec�q��q/T�

�q
. �D53�

7. Final integration and results

In Eq. �D53� we are left with the final integration over internal momenta q. Therefore we need the functional dependence
of �q and Ec�q� on q, which were introduced around Eq. �D6� as

�q = 2gT�2d − �a
� cos�q · a�� �D54�

Ec�q� =
e2

2C�q�
=

e2

ad�− ln�qa�, d = 1

�/q, d = 2

2�/q2, d = 3.
	 �D55�

The final q integral can therefore be written as

��1� =
− �̃

4�T2�2��dgT�0
2� dq ln�2Ec�q��q/T� . �D56�

The q integral is a cutoff at q=� /a. In d=3 the ln argument is finite at q=0. In d=2 the volume element makes the integrand
at q=0 finite. The coefficient in Eq. �D56� can be simplified to
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− �̃

4�T2�2��dgT�0
2 =

�2s

6�2��d

et0
2a2d+2

gT
��d

�0��2 T

	F
= −

��0�

2�gT
� a

2�
�d

, �D57�

such that in d=3 we obtain

�3D
�1� = −

��0�

2�gT
� a

2�
�3� dq ln�16�e2gT

aT

3 − cos�aqx� − cos�aqy� − cos�aqz�
�aq�2 � = −

��0�

2�gT
� a

2�
�3�3

a3 �4�

3
ln�16

e2

a
gT�/T� + c3� .

�D58�

Here c3=�dq ln��3−cos��qx�−cos��qy�−cos��qz�� / ��q�2� and the integration is over the unit sphere. However, this numeri-
cal constant �and all the others inside the logarithm� can be neglected, since Ec /T�1 and gT�1.

For d=2 we obtain

�2D
�1� =

− ��0�

2�gT
� a

2�
�2� dq ln�8e2gT�

Ta
�3 − cos�aqx� − cos�aqy��/�aq�� =

− ��0�

2�gT
� a

2�
�2�3

a2 �ln
8e2gT�

Ta
+ c2� , �D59�

with c2=� dq
� ln�

2−cos��qx�−cos��qy�
�q �.

a. Final results

Now, we can summarize our final results in d=2,3 for the thermoelectric coefficient �only the functional dependencies of
the correction terms are kept under the logarithms�,

��0� = −
s�3

3
et0

2ad+2��d
�0��2 T

	F
, �D60�

�3D
�1� =

s�3

54

ea5

gT
t0
2��3

�0��2 T

	F
ln� e2gT

Ta
� = −

��0�

12gT
ln�EcgT/T� , �D61�

�2D
�1� =

s�3

24

ea4

gT
�t0�2

�0��2 T

	F
ln� e2gT

Ta
� = −

��0�

8gT
ln�EcgT/T� , �D62�

or combined in a compact way �valid for d=2,3�, we obtain the following final result for the thermoelectric coefficient of
granular metals:

� = ��0��1 −
1

4dgT
ln

gTEc

T
� . �D63�
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